4/13/2009 Colloquium - Bethany Lyles Goldblum
![]() |
Bethany Lyles GoldblumUC Berkeley |
Event Info
Title: The Surrogate Method: An Indirect Approach to Nuclear Reactions Data to the Benefit of Future Nuclear Energy Systems
Date: Apr 13, 2009
Location: 3105 Etcheverry Hall
Time: 4-5pm
Abstract
To achieve improved design calculations for fast reactors, the determination or reevaluation of neutron-induced cross section data on a number of minor actinides is required. The Surrogate Method is an indirect technique for extracting neutron-induced reaction cross sections on both stable and radioactive nuclei. There are two means of application of the Surrogate Method, the absolute probability approach, or absolute surrogate technique, and the relative probability approach, or Surrogate Ratio Method (SRM). The Surrogate Method is conducted in the limit that the probability for decay into a given channel is independent of the total angular momentum and parity of the populated state, an assumption that has been shown to breakdown at low excitation energies. Given the possible disparity in the angular momentum populations resulting from the neutron-induced and surrogate reactions, experimental results will be presented showcasing the applicability and limitations of this technique in the actinide and rare earth regions.
Speaker Biography
Dr. Bethany Lyles Goldblum completed her doctoral degree with perfect marks in the Department of Nuclear Engineering from the University of California, Berkeley in 2007. Her doctoral dissertation, entitled “Absolute and Relative Surrogate Measurements of the 236U(n,f) Cross Section as a Probe of Angular Momentum Effects” investigated the limitations of the Surrogate Method, a technique for indirect determination of neutron-induced reaction cross sections on radioactive nuclei. Dr. Goldblum’s research interests are in the area of applied nuclear physics, with current emphasis on nuclear data needs for homeland security and Generation IV nuclear energy systems as well as nuclear forensics applications. She is the coauthor of several nuclear physics publications and maintains active collaborations with researchers in the Physical Sciences Directorate at Lawrence Livermore National Laboratory, the Nuclear Science Division at Lawrence Berkeley National Laboratory and the Department of Physics at the University of Oslo, Norway.


